Keys to Algae Control in Stormwater Management Ponds

Blake Moore
University of Delaware Cooperative Extension
Overview

- Revisiting a wet pond design
 - Post construction maintenance
- Intro to Algae
- Plants sometimes mistaken for algae
- Issues with algae blooms
- Causes of algae blooms
- Algae control (short and long term)
 - Algaecides
 - Nutrient management
Wet Pond

• Permanent pool
 – Contains water year round
 – Management is difficult due to water quality issues within the pond
 • algae
 – Public safety issues (require bench shelf)
• Vegetative Buffers
 – Embankments, vegetative buffer 25’ outward from the high water level
• Proactive Management Opportunities
Wet Pond Standard Design

Drawings from DNREC Division of Watershed Stewardship
Post Construction (focus on Wet ponds)

- Compliance and functionality
 - Operation and Management Plan
- Aesthetics and vegetation management
 - Can vary greatly from one landowner to the next
- Water Quality
 - Algae, turbidity, and macroinvertebrates are great indicators
- Opportunities
 - Habitat
 - Pollinator forage
Compliance and Functionality

- Preventative maintenance
 - Inspect structures: inlets, outfalls, rip-rap, pipes etc.
 - Unclog structures
 - Trash
 - Organic debris
 - Sediment
 - Basic Vegetation management
 - Mow access areas around inlets and outfalls
 - Prevent establishment of invasive plant species
Permanent Pool

- Water quality Issues
 - Nutrient load and sedimentation
 - Algae growth
 - Turbidity
 - Dissolved Oxygen deficiency
 - Fish kills
What are algae?

- Unicellular
- No roots
- Gathers nutrients as a food source directly from the water column
- Most types are healthy for an aquatic ecosystem at normal levels
- Quickly populates slow moving water bodies which are loaded with nutrients
- Most grow aggressively in warmer temperatures
Types of Algae

• Green Algae
 – Filamentous
 – stoneworts
• Blue-green algae
 – cyanobacteria
• Other problematic floating species
 – Duckweed
 – watermeal
Green Algae

- Filamentous
- mat forming
- Most are green although some can seem brown or blackish green
- This group of algae provides a food source for aquatic life but quickly becomes a detriment to the ecosystem during aggressive growth periods
- Most species grow on the bottom of aquatic systems
- Gases are formed which allow the algae to float to the surface creating massive mats
Green Algae

• Pithophora
 – Horsehair algae, tends to grow heavier in mid-late summer
 – Very difficult to control when established
• Spirogyra
 – Bright green, slimy mats, easy to control chemically
• Hydrodictyon
 – Mat forming, spongy, net like
 – Hexagonal or pentagonal patterns are visible
Green algae

• Chara
 – Green filamentous algae which anchors self to substrate
 – Can form dense stands in eutrophic waters
 – Resembles pondweeds, chara “pops” when squeezed to help with identification
 – Highly beneficial algae which creates habitat for macroinvertebrates and fish
Green algae

- **Hydrodictyon**
 - Photo by Pondpros

- **Chara**
- **Spirogyra**
 - Photo by ASAP Aquatics

- **Pithophora**

Photo by nathistoc
Blue-green algae

- Cyanobacteria
- forms what looks like pond scum, some species creates a “pea soup” look to a waterbody
- This type of algae is almost always detrimental to overall aquatic health
- Very quickly lowers dissolved oxygen levels to critical levels
- Main culprit in DO related fish kills
- Some species are able to fix nitrogen
- Some species excrete toxins which can cause incontinence in livestock and people. Can also create kidney or liver problems if ingested
- Some species excrete neurotoxins as well, tainted drinking water can cause mortality in livestock
Blue-green algae

- **Microsystis**
 - Pea soup appearance
 - Contains the hepatotoxin microsystin
- **Lyngbya**
 - Mat forming cyanobacteria
 - May cause irritate the skin but poses no long term issues
 - May appear black or dark green
- **Anabena**
 - Another pea soup colony forming cyanobacteria
 - Contains neurotoxin (anatoxin) and microsystin
Blue-green algae

- Micrystis
- Anabena
- Lyngbya
Plants mistaken for algae

• Common duckweed
 – Small floating plant with roots
 – 1 to 3 fronds/leaves per plant
 – Reproduces by seed and asexual budding
 – Beneficial in small amounts for waterfowl and other aquatic inhabitants
 – Becomes a management issue in slow moving, eutrophic waters
 – Quickly covers surface waters in the right conditions
Plants mistaken for algae

- Watermeal
 - Very small seed bearing, free floating, plant
 - Reproduces by seed and budding
 - Budding in eutrophic waters create massive infestations quickly
 - Very hard to control once established
Plants mistaken for algae

photo by Mike Kieron
Plants mistaken for algae

Photo by Solitude Lake Management
Issues with algae blooms

- Unsightly water quality
- Unpleasant smells
- Clogging of outfall structures
- Reduced water storage capacity
- Reduced diversity
- Reduced dissolved oxygen
 - Common cause of fish kills
Causes of algae blooms

• Stagnant waters
• Shallow water
• High nutrient load
 – Nitrogen and phosphorus
 • Sheet runoff
 • Stormwater runoff
 • Fertilizer runoff
 • Canada goose excrement
 • Sedimentation
Sources of nitrogen
Sources of Nitrogen
Sources of nitrogen

• According to National Geographic 50 Canada geese can produce two and a half TONS of excrement per year
Sources of phosphorus
Sources of phosphorus
Sources of phosphorus

- Fertilization practices
- Sedimentation
- Yard waste being dumped near drainage sites or leaf litter washing into pond
- Microbial activity releasing phosphorus from pond bottom
Now what?

- Most encounters with algae require immediate attention
 - Physical removal
 - Chemical treatment
 - Combination of the two

- Once immediate actions are complete/successful, move to long term nutrient management
Physical removal

- Algae harvesters
- Sein netting
- Raking
Chemical treatments

• All pesticides used in aquatic sites must be labelled for use in those systems to include adjuvants.
• Copper sulfate, chelated copper sulfate etc
 – Granular
 – Liquid
 – Potentially toxic to koi and trout
 – Has activity on some pondweeds including Hydrilla
• Sodium carbonate peroxyhydrate
 – Granular
 – Safe for use around koi, goldfish and trout
 – Breaks down into safe byproducts
• Algae should be treated above 60 degrees F for best results
Long term management

• Take actions to reduce the amount of available nutrients in the water column
 – Phosphorus precipitation (Lanthanum and clay or aluminum sulfate applications)
 – Removal of accumulated sediment from forebays and pond bottoms
 – Riparian buffers
 – Bench shelf plantings with native beneficial
 – Winter organic material removal
 – Aeration
 – Rain gardens
 – Rain barrels
Phosphorus precipitation

- Lanthanum and clay
 - Permanently locks free reactive phosphorus from the water column
 - Costly but safe and effective tool for phosphorus removal
- Aluminum sulfate
 - Binds phosphorus and suspended sediment for clarification and phosphorus removal solutions
Sediment removal

- Forebays must be cleaned out regularly
- Full pond dredges may be required
- Stabilize areas at risk of eroding
Riparian Buffers

- Maintain a vegetative riparian buffer around any stormwater management system
- Select for native beneficial grasses, forbs, shrubs, and trees
- Buffers should cover all slopes surrounding stormwater systems but at a minimum, maintain 3’ buffers
Bench shelf plantings

- Bench shelf is a safety measure installed in most stormwater ponds and are generally 6” to 12” deep
- Plant native beneficial aquatic plants to stabilize bench shelf and for nutrient removal
- Plantings also create habitat and diversity
Vegetated Perimeter

- Operate within the Operation and management plan
 - Plantings may include: trees, shrubs, grasses, forbs
 - Helps slow sheet runoff, capture nutrients, protect embankments, and may provide wildlife habitat and pollinator forage

- Management Issues
 - Invasive species
 - Differing opinions on what looks aesthetically pleasing
 - Time consuming
Embarkment

• Plantings may only be herbaceous
 – Grasses and forbs
 – Provides stabilization of embankment
 – Opportunity for wildlife habitat and pollinator forage

• Management issues
 – Invasive species management
 – Potential for erosion
 – Sloped terrain
 – Muskrats
Invasive Plant Species

- Delaware Invasive Species Council
- The Delaware Wetland Plant Field Guide

photo by Chris Evans University of Illinois
Desirable Upland Native Plants

• https://www.dnlaonline.org/resources/purchasing-native-plants
Desirable Wetland Native Plants

- The Delaware Wetland Plant Field Guide
 - DNREC Wetland Monitoring and Assessment Program
Winter organic removal

- Removal of dormant vegetation or leaves
- Decomposing organic material releases nutrients back into the water column
- To go along with removal, take measures to avoid introducing clippings or yard wastes into ponds and swales
Aeration

- Diffused air systems supply dissolved oxygen to entire water column
 - Also moves water enough to deter algae growth
 - Prevents stratification and fish kills
- Surface aeration supplies dissolved oxygen to top portion of the water column
 - Not as efficient at supplying DO to entire water column
 - Moves more water than diffused air
 - Aesthetically pleasing
- Water movers
 - Systems designed to create flow in low flow areas such as fingers in a pond
At home nutrient removal

• Rain gardens can be planted in areas that receive runoff at home
 – Slowly filters out nutrients
 – Creates habitat
 – Aesthetically pleasing
• Rain Barrels
 – Reduces amount of stormwater runoff
 – Recycle rainwater for use around the home
At Home Stormwater Management

• Rain barrels
• Rain gardens
• Turf conversion to meadow, trees, shrubs, etc
 – Opportunities to diversify services
• Buffers
• Direct gutters away from impervious surface
• Pervious hardscapes
At Home Stormwater Management
Stormwater Management Resources

• DNREC Division of Watershed Stewardship

• Conservation Districts
 – Sussex - https://www.sussexconservation.org/
 – Kent - http://kentcd.org/
 – New Castle - http://newcastleconservationdistrict.org/

• Private Consultants
Permitting

• NPDES Permit Required in Delaware to apply aquatic pesticides

• Pesticide Discharge Management Plan for services to populations over 10,000
 – Does not need to be submitted, but must be kept on record at the business
 – https://www3.epa.gov › npdes › pubs › pgp_pdmp_template
Certified Pesticide Applicator

• Must be certified with the Delaware Department of Agriculture
 – 5A – Aquatic
 – 5C – Mosquito Control
 – 06 – Right of Way
 – 03 – turf and ornamental
In Summary

• Looking at the big picture when managing stormwater management systems is key
• Due to human activity, all stormwater management systems must be monitored and managed over time to create static, healthy, functional, and aesthetically pleasing systems.
• Managing your environmental footprint at home helps reduce the amount of stress to community wide drainage systems
Questions?

R. Blake Moore
Natural Resources Agent
University of Delaware Cooperative Extension
https://www.udel.edu/canr/cooperative-extension/

rbmoore@udel.edu
302-730-4000