Keys to Algae Control in Stormwater Management Ponds

Blake Moore

University of Delaware Cooperative Extension

Overview

- Revisiting a wet pond design
 - Post construction maintenance
- Intro to Algae
- Plants sometimes mistaken for algae
- Issues with algae blooms
- Causes of algae blooms
- Algae control (short and long term)
 - Algaecides
 - Nutrient management

Wet Pond

- Permanent pool
 - Contains water year round
 - Management is difficult due to water quality issues within the pond
 - algae
 - Public safety issues (require bench shelf)
- Vegetative Buffers
 - Embankments, vegetative buffer 25' outward from the high water level
- Proactive Management Opportunities

Wet Pond Standard Design

Drawings from

DNREC Division

of Watershed

Stewardship

Post Construction (focus on Wet ponds)

- Compliance and functionality
 - Operation and Management Plan
- Aesthetics and vegetation management
 - Can vary greatly from one landowner to the next
- Water Quality
 - Algae, turbidity, and macroinvertebrates are great indicators
- Opportunities
 - Habitat
 - Pollinator forage

Compliance and Functionality

- Preventative maintenance
 - Inspect structures: inlets, outfalls, rip-rap, pipes etc.
 - Unclog structures
 - Trash
 - Organic debris
 - Sediment
 - Basic Vegetation management
 - Mow access areas around inlets and outfalls
 - Prevent establishment of invasive plant species

Permanent Pool

- Water quality Issues
 - Nutrient load and sedimentation
 - Algae growth
 - Turbidity
 - Dissolved Oxygen deficiency
 - Fish kills

What are algae?

- Unicellular
- No roots
- Gathers nutrients as a food source directly from the water column
- Most types are healthy for an aquatic ecosystem at normal levels
- Quickly populates slow moving water bodies which are loaded with nutrients
- Most grow aggressively in warmer temperatures

Types of Algae

- Green Algae
 - Filamentous
 - stoneworts
- Blue-green algae
 - cyanobacteria
- Other problematic floating species
 - Duckweed
 - watermeal

Green Algae

- Filamentous
- mat forming
- Most are green although some can seem brown or blackish green
- This group of algae provides a food source for aquatic life but quickly becomes a detriment to the ecosystem during aggressive growth periods
- Most species grow on the bottom of aquatic systems
- Gases are formed which allow the algae to float to the surface creating massive mats

Green Algae

- Pithophora
 - Horsehair algae, tends to grow heavier in mid-late summer
 - Very difficult to control when established
- Spirogyra
 - Bright green, slimy mats, easy to control chemically
- Hydrodictyon
 - Mat forming, spongy, net like
 - Hexagonal or pentagonal patterns are visible

Green algae

- Chara
 - Green filamentous algae which anchors self to substrate
 - Can form dense stands in eutrophic waters
 - Resembles pondweeds, chara "pops" when squeezed to help with identification
 - Highly beneficial algae which creates habitat for macroinvertebrates and fish

Green algae

photo by nathistoc

Hydrodichtion
Photo by Pondpros

photo by ASAP Aquatics chara

Spirogyra

Pithophora

Blue-green algae

- Cyanobacteria
- forms what looks like pond scum, some species creates a "pea soup" look to a waterbody
- This type of algae is almost always detrimental to overall aquatic health
- Very quickly lowers dissolved oxygen levels to critical levels
- Main culprit in DO related fish kills
- Some species are able to fix nitrogen
- Some species excrete toxins which can cause incontinence in livestock and people. Can also create kidney or liver problems if ingested
- Some species excrete neurotoxins as well, tainted drinking water can cause mortality in livestock

Blue-green algae

- Microsystis
 - Pea soup appearance
 - Contains the hepatotoxin microsystin
- Lyngbya
 - Mat forming cyanobacteria
 - May cause irritate the skin but poses no long term issues
 - May appear black or dark green
- Anabena
 - Another pea soup colony forming cyanobacteria
 - Contains neurotoxin (anatoxin) and microsystin

Blue-green algae

photo by Alpha Environmental

Micrisystis

Anabena

photo by USGS

Lyngbya

Plants mistaken for algae

- Common duckweed
 - Small floating plant with roots
 - 1 to 3 fronds/leaves per plant
 - Reproduces by seed and asexual budding
 - Beneficial in small amounts for waterfowl and other aquatic inhabitants
 - Becomes a management issue in slow moving, eutrophic waters
 - Quickly covers surface waters in the right conditions

Plants mistaken for algae

- Watermeal
 - Very small seed bearing, free floating, plant
 - Reproduces by seed and budding
 - Budding in eutrophic waters create massive infestations quickly
 - Very hard to control once established

Plants mistaken for algae photo by MIKE KIEFON

Plants mistaken for algae

Photo by Solitude Lake Management

Issues with algae blooms

- Unsightly water quality
- Unpleasant smells
- Clogging of outfall structures
- Reduced water storage capacity
- Reduced diversity
- Reduced dissolved oxygen
 - Common cause of fish kills

Causes of algae blooms

- Stagnant waters
- Shallow water
- High nutrient load
 - Nitrogen and phosphorus
 - Sheet runoff
 - Stormwater runoff
 - Fertilizer runoff
 - Canada goose excrement
 - Sedimentation

Sources of nitrogen

photo courtesy of physicalgeography.net

Sources of Nitrogen

Sources of nitrogen

 According to National Geographic 50 Canada geese can produce two and a half TONS of excrement per year

Sources of phosphorus

Sources of phosphorus

Sources of phosphorus

- Fertilization practices
- Sedimentation
- Yard waste being dumped near drainage sites or leaf litter washing into pond
- Microbial activity releasing phosphorus from pond bottom

Now what?

- Most encounters with algae require immediate attention
 - Physical removal
 - Chemical treatment
 - Combination of the two
- Once immediate actions are complete/successful, move to long term nutrient management

Physical removal

- Algae harvesters
- Sein netting
- raking

Chemical treatments

- All pesticides used in aquatic sites must be labelled for use in those systems to include adjuvants.
- Copper sulfate, chelated copper sulfate etc
 - Granular
 - Liquid
 - Potentially toxic to koi and trout
 - Has activity on some pondweeds including Hydrilla
- Sodium carbonate peroxyhydrate
 - granular
 - Safe for use around koi, goldfish and trout
 - Breaks down into safe byproducts
- Algae should be treated above 60 degrees F for best results

Long term management

- Take actions to reduce the amount of available nutrients in the water column
 - Phosphorus precipitation (Lanthanum and clay or aluminum sulfate applications)
 - Removal of accumulated sediment from forebays and pond bottoms
 - Riparian buffers
 - Bench shelf plantings with native beneficial
 - Winter organic material removal
 - Aeration
 - Rain gardens
 - Rain barrels

Phosphorus precipitation

- Lanthanum and clay
 - Permanently locks free reactive phosphorus from the water column
 - Costly but safe and effective tool for phosphorus removal
- Aluminum sulfate
 - Binds phosphorus and suspended sediment for clarification and phosphorus removal solutions

Sediment removal

- Forebays must be cleaned out regularly
- Full pond dredges may be required
- Stabilize areas at risk of eroding

Riparian Buffers

- Maintain a vegetative riparian buffer around any stormwater management system
- Select for native beneficial grasses, forbs, shrubs, and trees
- Buffers should cover all slopes surrounding stormwater systems but at a minimum,
 maintain 3' buffers

Bench shelf plantings

 Bench shelf is a safety measure installed in most stormwater ponds and are generally 6" to 12" deep

• Plant native beneficial aquatic plants to stabilize bench shelf and for nutrient

removal

Plantings also create habitat and diversity

Vegetated Perimeter

- Operate within the Operation and management plan
 - Plantings may include: trees, shrubs, grasses, forbs
 - Helps slow sheet runoff, capture nutrients, protect embankments, and may provide wildlife habitat and pollinator forage
- Management Issues
 - Invasive species
 - Differing opinions on what looks aesthetically pleasing
 - Time consuming

Embankment

- Plantings may only be herbaceous
 - Grasses and forbs
 - Provides stabilization of embankment
 - Opportunity for wildlife habitat and pollinator forage
- Management issues
 - Invasive species management
 - Potential for erosion
 - Sloped terrain
 - Muskrats

Invasive Plant Species

- J. Miller, C. Evans
- UGA1380001

- Delaware Invasive Species Council
- The Delaware Wetland Plant Field Guide

photo by Chris Evans University of Illinois

Desirable Upland Native Plants

- http://udextension.s3.amazonaws.com/factsheet/wpcontent/uploads/2012/06/NativePlants.pdf
- https://www.dnlaonline.org/resources/purchasing-native-plants

Desirable Wetland Native Plants

- The Delaware Wetland Plant Field Guide
 - DNREC Wetland Monitoring and Assessment Program

Winter organic removal

- Removal of dormant vegetation or leaves
- Decomposing organic material releases nutrients back into the water column
- To go along with removal, take measures to avoid introducing clippings or yard wastes into ponds and swales

Aeration

- Diffused air systems supply dissolved oxygen to entire water column
 - Also moves water enough to deter algae growth
 - Prevents stratification and fish kills
- Surface aeration supplies dissolved oxygen to top portion of the water column
 - Not as efficient at supplying DO to entire water column
 - Moves more water than diffused air
 - Aesthetically pleasing
- Water movers
 - Systems designed to create flow in low flow areas such as fingers in a pond

At home nutrient removal

- Rain gardens can be planted in areas that receive runoff at home
 - Slowly filters out nutrients
 - Creates habitat
 - Aesthetically pleasing
- Rain Barrels
 - Reduces amount of stormwater runoff
 - Recycle rainwater for use around the home

At Home Stormwater Management

- Rain barrels
- Rain gardens
- Turf conversion to meadow, trees, shrubs, etc
 - Opportunities to diversify services
- Buffers
- Direct gutters away from impervious surface
- Pervious hardscapes

At Home Stormwater Management

Figure 5: Interlocking Pavers in Oxford, MD. Photo by Eric Buehl.

Stormwater Management Resources

- DNREC Division of Watershed Stewardship
 - http://www.dnrec.delaware.gov/swc/Pages/SedimentStormwater.aspx
- Conservation Districts
 - Sussex https://www.sussexconservation.org/
 - Kent http://kentcd.org/
 - New Castle http://newcastleconservationdistrict.org/
- Private Consultants

Permitting

- NPDES Permit Required in Delaware to apply aquatic pesticides
 - https://dnrec.alpha.delaware.gov/water/surface-water/npdes/aquaticpesticides/
- Pesticide Discharge Management Plan for services to populations over 10,000
 - Does not need to be submitted, but must be kept on record at the business
 - https://www3.epa.gov npdes pubs pgp_pdmp_template

Certified Pesticide Applicator

- Must be certified with the Delaware Department of Agriculture
 - 5A Aquatic
 - 5C Mosquito Control
 - 06 Right of Way
 - 03 turf and ornamental
- https://agriculture.delaware.gov/pesticide-management/pesticide-applicatorcertification/

In Summary

- Looking at the big picture when managing stormwater management systems is key
- Due to human activity, all stormwater management systems must be monitored and managed over time to create static, healthy, functional, and aesthetically pleasing systems.
- Managing your environmental footprint at home helps reduce the amount of stress to community wide drainage systems

Questions?

R. Blake Moore

Natural Resources Agent

University of Delaware Cooperative Extension

https://www.udel.edu/canr/cooperative-extension/

<u>rbmoore@udel.edu</u> 302-730-4000

